

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech III Year I Semester Supplementary Examinations November-2020 LINEAR IC APPLICATIONS

(Common to EEE & ECE)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 Calculate the amplification factor for AC signal input in dual input balanced output 12M differential amplifier.

OR

 2 a Explain how the constant current bias circuit is replaced by the current mirror circuit.
 6M

b Explain and derive the current expression of current mirror circuit diagram **6M**

UNIT-II

3 Explain in detail about external frequency compensation techniques with neat **12M** sketches.

OR

4	a Explain the importance of the stability criterion of the op-amp.	6M
	b Define the total input offset voltage and thermal drift.	6M

UNIT-III

5	Draw the circuit diagram of the instrumentation amplifier and derive the gain.	12M

OR

- 6 Explain the operation of first order low pass butter worth filter & derive the **12M** expression for filter gain & draw a neat sketch of frequency response.
 - UNIT-IV
- 7 a Explain the comparator and zero crossing detector.
 6M
 6M
- **b** Explain the operation of Wein bridge oscillator and derive its frequency
 6M

 expression with neat circuit diagram.
 6M

UNIT-V

9 Draw the circuit diagram of single Slope ADC and explain its working with neat **12M** sketches.

OR

10 a Draw and explain the weighted resistor DAC.6Mb Explain ladder type DAC with a neat circuit diagram.6M

*** END ***

R16